博客
关于我
第五章 数字滤波器的基本结构之四
阅读量:358 次
发布时间:2019-03-04

本文共 735 字,大约阅读时间需要 2 分钟。

数字滤波器的格型结构

数字滤波器作为信号处理领域的重要组成部分,其格型结构设计至今仍然是研究的热点。格型结构的滤波器因其结构简单、性质明确而备受关注。本文将从零点系统和极点系统两个方面,详细探讨数字滤波器的格型结构特点。

格型结构的优点

格型结构的滤波器具有显著的优势,主要体现在以下几个方面:

  • 结构简单:格型滤波器的结构设计直观,易于实现。
  • 频率响应特性:其频率响应特性可以通过滤波器的系数直接观察。
  • 数值稳定性:格型滤波器在数值计算中具有较高的稳定性。
  • 全零点系统(FIR系统)的格型结构

    全零点系统属于数字滤波器的一种,其格型结构具有明显的特点:

  • 对称性强:FIR滤波器的系数通常关于中心对称。
  • 零点系统:滤波器的频率响应在零频率和对称频率处均为零。
  • 典型的FIR滤波器结构如下:

    • 结构特征
      • 滤波器的长度由设计参数决定。
      • 系数对称性是实现滤波器时的关键。

    全极点系统(IIR系统)的格型结构

    全极点系统是一种常见的数字滤波器,其格型结构具有以下特点:

  • 极点分布:滤波器的极点分布在单位圆上。
  • 反射性质:滤波器的设计往往基于反射原理。
  • 全极点滤波器的结构设计通常包括:

    • 低通滤波器:用于抑制低频成分。
    • 高通滤波器:用于抑制高频成分。

    零极点系统(IIR系统)的格型结构

    零极点系统是一种特殊的IIR滤波器,其格型结构具有显著特点:

  • 零点分布:滤波器的零点位于单位圆内。
  • 极点分布:滤波器的极点位于单位圆上或之外。
  • 零极点滤波器的设计通常包括:

    • 低通滤波器:用于保留低频信号。
    • 高通滤波器:用于保留高频信号。

    通过对上述结构的分析,可以清晰地看出数字滤波器的格型结构在不同系统中的独特优势。无论是FIR系统还是IIR系统,其结构设计都体现了在信号处理领域的实际需求。

    转载地址:http://pnfr.baihongyu.com/

    你可能感兴趣的文章
    Objective-C实现2 个数字之间的算术几何平均值算法(附完整源码)
    查看>>
    Objective-C实现2d 表面渲染 3d 点算法(附完整源码)
    查看>>
    Objective-C实现2D变换算法(附完整源码)
    查看>>
    Objective-C实现3n+1猜想(附完整源码)
    查看>>
    Objective-C实现3n+1猜想(附完整源码)
    查看>>
    Objective-C实现9x9乘法表算法(附完整源码)
    查看>>
    Objective-C实现9×9二维数组数独算法(附完整源码)
    查看>>
    Objective-C实现A*(A-Star)算法(附完整源码)
    查看>>
    Objective-C实现A-Star算法(附完整源码)
    查看>>
    Objective-C实现abbreviation缩写算法(附完整源码)
    查看>>
    Objective-C实现ABC人工蜂群算法(附完整源码)
    查看>>
    Objective-C实现activity selection活动选择问题算法(附完整源码)
    查看>>
    Objective-C实现AC算法(Aho-Corasick) 算法(附完整源码)
    查看>>
    Objective-C实现adaboost算法(附完整源码)
    查看>>
    Objective-C实现Adler32算法(附完整源码)
    查看>>
    Objective-C实现AES算法(附完整源码)
    查看>>
    Objective-C实现AffineCipher仿射密码算法(附完整源码)
    查看>>
    Objective-C实现aliquot sum等分求和算法(附完整源码)
    查看>>
    Objective-C实现all combinations所有组合算法(附完整源码)
    查看>>
    Objective-C实现all permutations所有排列算法(附完整源码)
    查看>>